· First, they teleported photons, then atoms and ions. Now one physicist has worked out how to do it with energy, a technique that has profound implications for the future of physics.
http://www.technologyreview.com/blog/arxiv/24759/In 1993, Charlie Bennett at IBM's Watson Research Center in New York State and a few pals showed how to transmit quantum information from one point in space to another without traversing the intervening space.
The technique relies on the strange quantum phenomenon called entanglement, in which two particles share the same existence. This deep connection means that a measurement on one particle immediately influences the other, even though they are light-years apart. Bennett and company worked out how to exploit this to send information. (The influence between the particles may be immediate, but the process does not violate relativity because some informatiom has to be sent classically at the speed of light.) They called the technique teleportation.
[...]
But Masahiro Hotta at Tohoku University in Japan has come up with a much more exotic idea. Why not use the same quantum principles to teleport energy?
[...]
All this is possible because there are always quantum fluctuations in the energy of any particle. The teleportation process allows you to inject quantum energy at one point in the universe and then exploit quantum energy fluctuations to extract it from another point. Of course, the energy of the system as whole is unchanged.
[...]
There is a growing sense that the properties of the universe are best described not by the laws that govern matter but by the laws that govern information. This appears to be true for the quantum world, is certainly true for special relativity, and is currently being explored for general relativity. Having a way to handle energy on the same footing may help to draw these diverse strands together.
Read more...The technique relies on the strange quantum phenomenon called entanglement, in which two particles share the same existence. This deep connection means that a measurement on one particle immediately influences the other, even though they are light-years apart. Bennett and company worked out how to exploit this to send information. (The influence between the particles may be immediate, but the process does not violate relativity because some informatiom has to be sent classically at the speed of light.) They called the technique teleportation.
[...]
But Masahiro Hotta at Tohoku University in Japan has come up with a much more exotic idea. Why not use the same quantum principles to teleport energy?
[...]
All this is possible because there are always quantum fluctuations in the energy of any particle. The teleportation process allows you to inject quantum energy at one point in the universe and then exploit quantum energy fluctuations to extract it from another point. Of course, the energy of the system as whole is unchanged.
[...]
There is a growing sense that the properties of the universe are best described not by the laws that govern matter but by the laws that govern information. This appears to be true for the quantum world, is certainly true for special relativity, and is currently being explored for general relativity. Having a way to handle energy on the same footing may help to draw these diverse strands together.
Energy-Entanglement Relation for Quantum Energy Teleportation
· Masahiro Hotta ·
· Masahiro Hotta ·