Physical Reality Of String Theory Shown In Quantum-critical State Of Electrons


String theory has come under fire in recent years. Promises have been made that have not been lived up to. Leiden theoretical physicists have now for the first time used string theory to describe a physical phenomenon -- the quantum-critical state of electrons leading to high-temperature superconductivity.
Electrons can form a special kind of state, a so-called quantum critical state, that plays a role in high-temperature superconductivity. Superconductivity at high temperatures has long been a 'hot issue' in physics. In superconductivity, discovered by Heike Kamerlingh Onnes in Leiden, electrons can zoom through a material without meeting any resistance. In the first instance, this only seemed possible at very low temperatures close to absolute zero, but more and more examples are coming up where it also occurs at higher temperatures. So far, nobody has managed to explain high temperature superconductivity.
Jan Zaanen makes no attempt to hide his enthusiasm. Together with Mihailo Cubrovic and Koenraad Schalm, he has successfully managed to shed light on a previously unexplained natural phenomenon using the mathematics of string theory.
Reblog this post [with Zemanta]

No comments: